
 1

A study on two query language approximations to the traveling salesman problem
 version date: 5-4-2007

J.A. Bakker and J.H. ter Bekke 1

Abstract
We discuss two query language approximations to the asymmetric traveling salesman problem (TSP). Both are based
on the transformation of a directed cyclic geometric graph into a directed acyclic time graph for ride scheduling. This
time graph represents the possible turns (arcs) between successive rides (nodes) on roads. The first approach applies
the recursive cascade command of the Xplain database language and produces sometimes a correct shortest cycle,
but in most cases it results in incorrect cycles passing some town more than once. The second approach does not
apply the cascade command and produces correct cycles that are sometimes the shortest, but not in all cases. The
estimated time complexity of both approaches is proportional to N5, where N is the number of towns.

Keywords: graph reduction, query language, recursion, semantic data model, traveling salesman problem

1. Introduction

In previous work we described the application of the recursive cascade update command, the last
language extension by the second author to the Xplain database language [9, 10]. This command
can be applied to path problems in data structures corresponding with a weighed directed acyclic
graph [1]. Examples using non-recursive data structures are: critical path analysis in project
planning [14] and product planning [15]. We also demonstrated the applicability of this approach
to problems related to recursive data structures such as the family tree [17, 18].
 The algorithm underlying the cascade command attempts to achieve complete graph
reduction as a preparation to a well ordered serial processing. However, complete graph reduction
is impossible in the case of cyclic graphs [5]. Therefore the presence of any cycle is detected
automatically by the Xplain-DBMS and the nodes involved in a cycle are reported to the user.
 A first impression was that the cascade command could not be applied to real life networks
such as road networks, because they are full of cycles. However, we demonstrated how a cyclic
geometric graph for airports can be transformed into an acyclic graph for flight schedules [2],
which is the basis for finding the fastest series of flights between two airports irrespective the
number of transfers. A similar graph transformation applied to a road network produced an
acyclic graph for ride scheduling: a database for roads and towns was extended with rides on
roads and turns between successive rides. In this way shortest path problems in cyclic geometries
became solvable [3].
 Because of the polynomial time complexity [16] of the cascade operation, section 4 examines
whether the application of the cascade command to TSP could lead to a correct result. In section
5 we also propose a greedy query language solution not using any cascade command.
 Section 2 presents a data model suitable for scheduling successive rides on roads, as presented
earlier [3]. In section 3 we present an example of an acyclic scheduling graph derived from a
cyclic geometry. Section 4 also describes how we generated the database for our research on
TSP.

1 This research started in the fall of 2003, was delayed by a re-organization within the Faculty of Electrical Engineering,
Mathematics and Computer Science of Delft University of Technology, the Netherlands, leading in July 2004 to the retirement of
a number of staff members including the first author. The second author suddenly passed away on March 19th, 2004. Most of the
publications related to semantic database principles and applications are available through: http://www.jhterbekke.net

 2

2. A data model for scheduling rides and turns

A ride has geometric dimensions (occurs on a road) and a time dimension (time level) as well,
whereas a turn denotes which ride may follow after a ride. The data model in figure 1, already
applied in [3], enables us to register rides and turns between rides in a correct way.

 type turn (i6) = previous_ride (i5), next_ride (i5).
 type ride (i5) = road (i3), time_level (i2).
 type road (i3) = from_town (a2), to_town (a2), distance (i3).

 type town (a2) = name (a20).

Figure 1. A data model for rides and turns

In addition to the integrity rules inherently specified in the data model, more restrictions are
required for data on turns. They are expressed by an assertion specifying the calculation of a
derivable Boolean property �turn its correctness� that must be true for all turns:

assert turn its correctness (true) = (next_ride its time_level = previous_ride its time_level + 1
 and previous_ride its road <> next_ride its road
 and previous_ride its road its to_town = next_ride its road its from_town
 and previous_ride its road its from_town <> next_ride its road its to_town).

The last part of the assertion specifies that turnarounds (turns from a ride on road XY to a ride on
road YX) must be absent in the database. In Xplain static restrictions, additional to the structural
restrictions inherent in a data model, must be specified in terms of derived data, they cannot be
specified in terms of the data model alone. This leads to a wealthy separation between inherent
static constraints (referential and entity integrity rules) and additional static constraints and
avoids the problems created by SQL. The last language is non-orthogonal since it allows for the
specification of referential integrity rules by foreign key constraints and assertions as well.
Consequently, in SQL it is the responsibility of the database manager to prevent the specification
of overlapping or conflicting rules.
 Turns could be derived from rides and rides from roads (by using join operations), but the
Xplain language requires an explicit registration of rides and turns because this data language
does not allow for join operations. The reason is that seemingly semantically correct join
operations can lead to incorrect or incomplete query results as has been demonstrated for SQL,
especially when set functions combined with the GROUP BY construct are involved [4, 11, and
13]. Therefore, only referential paths may be applied in Xplain and the direction of such paths

turn

road

ride

town

 3

must be respected. An illustration is the following retrieval of the subset of connected towns
where Amsterdam is the turning point between two rides:

get turn its previous_ride its road its from_town its name,
 next_ride its road its to_town its name
 where previous_ride its time_level = 1
 and previous_ride its road its to_town its name = �Amsterdam�.

The data definitions in figure 1 enable us presenting the required data on rides and turns as a
directed acyclic graph: each turn (arc) always connects two successive rides (nodes) with
successive time levels. The following section describes the application of the transformation of a
cyclic road network into an acyclic scheduling graph, used for TSP-5.

3. Graph transformation

We illustrate our ideas by transforming the cyclic geometric graph of figure 2 into the acyclic
time graph in figure 3 showing the possible turns between successive rides. This graph (a kind of
Petri Net [6]) and the associated database can be used up to TSP-10.

 K
 C

 J
 H

 D E

 G

 A B

 F

 Number of towns (N): 10
 Number of time levels (N): 10
 Number of one-direction roads (N*(N-1)): 90
 Number of rides (N2*(N-1)): 900
 Number of rides with succeeding rides (N*(N-1)2): 810
 Number of usable turns ((N-2)*N*(N-1)2): 6480

Figure 2. Example of a bi-directional road network between ten towns.

 4

 AB5 AC5 AD5 AE5 BA5 BC5 BD5 BE5 CA5 CB5 CD5 CE5 DA5 DB5 DC5 DE5 EA5 EB5 EC5 ED5

 AB4 AC4 AD4 AE4 BA4 BC4 BD4 BE4 CA4 CB4 CD4 CE4 DA4 DB4 DC4 DE4 EA4 EB4 EC4 ED4

 AB3 AC3 AD3 AE3 BA3 BC3 BD3 BE3 CA3 CB3 CD3 CE3 DA3 DB3 DC3 DE3 EA3 EB3 EC3 ED3

 AB2 AC2 AD2 AE2 BA2 BC2 BD2 BE2 CA2 CB2 CD2 CE2 DA2 DB2 DC2 DE2 EA2 EB2 EC2 ED2

 AB1 AC1 AD1 AE1 BA1 BC1 BD1 BE1 CA1 CB1 CD1 CE1 DA1 DB1 DC1 DE1 EA1 EB1 EC1 ED1

Figure 3. Rides and turns (arcs) starting in town A (TSP-5, geometry in figure 2).

Figure 3 shows the 24 possible round tours (4*3*2*1) through the towns A, B, C, D and E with
town A as start and finish (TSP-5). For example, the geographic cycle ABCDEA is traversed by
the following series of rides with successive time levels: AB1, BC2, CD3, DE4 and EA5. Later
on it will become clear that the shortest cyclic tour can use the following sequence of rides: AB1,
BE2, EC3, CD4 and DA5 (indicated by fat arrows in figure 3): ABECDA. The dotted arcs
represent an example of an incorrect cycle formed by the rides AD1, DB2, BE3, ED4 and DA5:
ADBEDA.

Table 1 shows the involved road data. The roads 1 - 20 are involved in finding a shortest cycle
through the towns A, B, C, D and E. Table 2 shows data on the other roads. Both tables illustrate
that we are dealing with the asymmetric TSP. These both tables can be found in Appendix-I.

Table 3 presents all 24 possible cycles for TSP-5 starting and finishing in town A. Of course each
town can function as start and finish. We only have to shift the time levels in the desired direction
in order to find equivalent cycles For example, if the route ABECDA is the shortest cycle, then
BECDAB, CDABEC, DABECD and ECDABE are also shortest cycles.

 5

time_

level =

1

ride

time_level = 2

ride distance

time_level = 3

ride distance

time_level = 4

ride distance

time_level = 5

ride distance

total

distance

AB(49) BC(39) 88 CD(48) 136 DE(34) 170 EA(46) 216 216

AB(49) BC(39) 88 CE(24) 112 ED(33) 145 DA(23) 168 168

AB(49) BD(44) 93 DC(47) 140 CE(24) 164 EA(46) 210 210

AB(49) BD(44) 93 DE(34) 127 EC(24) 151 CA(66) 217 217

AB(49) BE(19) 68 EC(24) 92 CD(48) 140 DA(23) 163 163

AB(49) BE(19) 68 ED(33) 101 DC(47) 148 CA(66) 214 214

AC(67) CB(40) 107 BD(44) 151 DE(34) 185 EA(46) 231 231

AC(67) CB(40) 107 BE(19) 126 ED(33) 159 DA(23) 182 182

AC(67) CD(48) 115 DE(34) 149 EB(20) 169 BA(50) 242 242

AC(67) CD(48) 115 DB(43) 158 BE(19) 177 EA(46) 223 223

AC(67) CE(24) 91 EB(20) 111 BD(44) 155 DA(23) 178 178

AC(67) CE(24) 91 ED(33) 124 DB(43) 167 BA(50) 217 217

AD(25) DB(43) 68 BC(39) 107 CE(24) 131 EA(46) 177 177

AD(25) DB(43) 68 BE(19) 87 EC(24) 111 CA(66) 177 177

AD(25) DC(47) 72 CB(40) 112 BE(19) 131 EA(46) 177 177

AD(25) DC(47) 72 CE(24) 96 EB(20) 116 BA(50) 166 166

AD(25) DE(34) 59 EB(20) 79 BC(39) 118 CA(66) 184 184

AD(25) DE(34) 59 EC(24) 83 CB(40) 123 BA(50) 173 173

AE(47) EB(20) 67 BC(39) 106 CD(48) 154 DA(23) 177 177

AE(47) EB(20) 67 BD(44) 111 DC(47) 158 CA(66) 224 224

AE(47) EC(24) 71 CB(40) 111 BD(44) 155 DA(23) 178 178

AE(47) EC(24) 71 CD(48) 119 DB(43) 162 BA(50) 212 212

AE(47) ED(33) 80 DB(43) 123 BC(39) 162 CA(66) 228 228

AE(47) ED(33) 80 DC(47) 127 CB(40) 167 BA(50) 217 217

Table 3. All possible cycles for TSP-5 starting and finishing in town A

Apparently ABECDA is the shortest cycle and its total length is 163. The reverse cycle
ADCEBA appears to have a total length 166.

4. Database generation

The Xplain language does not support the relational join operation, but the report generator of
Xplain is able to execute join operations between the contents of reports produced by queries. Also
the relational project and subtract operations can be applied to reports. In reports each line
represents an instance of the set of query results; similar results (such as attribute values) are shown
per column. Xplain also offers the possibility to apply sorting to reports on the bases of a selected
column. Sorting is a well known preparative operation reducing the time complexity of joins. The
result of a join is a new report. Any column in the resulting report can be removed (projection),
which was applied to remove duplicate columns produced by a join operation. Queries producing
rides and turns, using the facilities of the report generator, are shown in Appendix-I.

5. Applying the cascading update operation to TSP-5

In Appendix-II we present the results produced by a query using the recursive cascade command.
In the case of attempting to find the shortest cycle through the towns A, B, C, D and E this query
produces an incorrect �shortest cycle� ADBEDA (total distance: 143). This result is incorrect

 6

because town D is passed twice and town C is missed. This incorrect cycle is shown in figure 3
by dotted arcs. This incorrect result is quite understandable if we consider the essence of the
applied cascading updates:

In the first part for each ride the distance �ride its sdistance� to the starting town A is calculated
step by step. First all rides get a distance inherited from the referenced road:

 extend ride with distance = road its distance.

Then for all rides the value of �ride its sdistance� is initialized using a value �inf� that cannot be
exceeded:

 value inf = total road its distance.
 extend ride with sdistance = inf.

A correction must be made for the rides with time level 1 and starting in town A:

 update ride its sdistance = 0 where road its to_town = �A� and time_level = 1.

Using the cascading update operation the value of �ride its sdistance� is calculated for successive
rides (thus rides with higher time levels):

 cascade ride its sdistance = min turn its previous_ride its sdistance + previous_ride its distance where c
 per next_ride.

Only correct turns may be applied. Therefore appendix-II also contains the specification of the
derived attribute �turn its c� defining the correctness of a turn in relationship to the problem at
hand, but here we do not show how this derived attribute gets a value.

In a similar way we calculate for each ride the distance to the finish of the cycle (town A): �ride
its fdistance�.

Now we can calculate a total distance for each ride on a cyclic tour from town A to town A:

 extend ride with totaldist = distance + sdistance + fdistance.

The minimal total distance can be determined now:

 value minimum = min ride its totaldist.

Now we can retrieve the rides having this minimal total distance:

 get ride where totaldist = minimum.

The relevant results of these two cascading update operation on the possibly rides with time
levels 1 and 2 are summarized for TSP-5 in table 4 showing results that are incorrect because the
correctness of the shortest pre-routes was ignored. An improved variant approach based on
correct shortest pre-routes produced the results presented in table 5.

 7

ride ride its
distance

ride its
sdistance

 (shortest
 preceding route)

ride its
(distance +
sdistance)

 ride its
 fdistance
 (shortest
 following route)

ride its
(distance

+
fdistance)

ride its
totaldist

AB1 49 0 49 114(BE2-EC3-CD4-DA5) 163 163
AC1 67 0 67 111(CE2-EB3-BD4-DA5) 178 178
AD1 25 0 25 118(DB2-BE3-ED4-DA5)# 143 143
AE1 47 0 47 129(EB2-BC3-CE4-EA5)#

129(EC2-CB3-BE4-EA5)#
 176 176

BC2 39 49(AB1) 88 80(CE3-ED4-DA5) 119 168
BD2 44 49(AB1) 93 104(DE3-EB4-DA5) # 148 197
BE2 19 49(AB1) 68 95(EC3-CD4-DA5) 114 163
CB2 40 67(AC1) 107 75(BE3-ED4-DA5) 115 182
CD2 48 67(AC1) 115 104(DE3-EB4-BA5) 152 219
CE2 24 67(AC1) 91 87(EB3-BD4-DA5) 111 178
DB2 43 25(AD1) 68 75(BE3-ED4-DA5) # 118 143
DC2 47 25(AD1) 72 80(CE3-ED4-DA5) # 127 152
DE2 34 25(AD1) 59 87(EB3-BD4-DA5) # 121 146
EB2 20 47(AE1) 67 109(BC3-CE4-EA5) # 129 176
EC2 24 47(AE1) 71 105(CB3-BE4-EA5) # 129 176
ED2 33 47(AE1) 80 108(DB3-BE4-EA5) # 141 188

BC3 39 67(AE1-EB2) 106 70(CE4-EA5) 109 176
BD3 44 67(AE1-EB2) 111 80(DE4-EA5) 124 191
BE3 19 68(AD1-DB2) 87 56(ED4-DA5) 75 143
CB3 40 71(AE1-EC2) 111 65(BE4-EA5) 105 176
CD3 48 71(AE1-EC2) 119 80(DE4-EA5) 128 199
CE3 24 72(AD1-DC2) 96 56(ED4-DA5) 80 152
DB3 43 80(AE1-ED2) 123 65(BE4-EA5) 108 188
DC3 47 80(AE1-ED2) 127 70(CE4-EA5) 117 197
DE3 34 93(AB1-BD2) 127 70(EB4-BA5) 104 197
EB3 20 59(AD1-DE2) 79 67(BD4-DA5) 87 146
EC3 24 59(AD1-DE2) 83 71(CD4-DA5) 95 154
ED3 33 68(AB1-BE2) 101 93(DB4-BA5) 126 194

BC4 39 79(AD1-DE2-EB3) 118 66(CA5) 105 184
BD4 44 79(AD1-DE2-EB3) # 123 23(DA5) 67 146
BE4 19 111(AE1-EC2-CB3) # 130 46(EA5) 65 176
CB4 40 83(AD1-DE2-EC3) 123 50(BA5) 90 173
CD4 48 83(AD1-DE2-EC3) # 131 23(DA5) 71 154
CE4 24 106(AE1-EB2-BC3) # 130 46(EA5) 70 176
DB4 43 101(AB1-BE2-ED3) # 144 50(BA5) 93 194
DC4 47 101(AB1-BE2-ED3) 148 66(CA5) 113 214
DE4 34 119(AE1-EC2-CD3) # 153 46(EA5) 80 199
EB4 20 96(AD1-DC2-CE3) 116 50(BA5) 70 166
EC4 24 87(AD1-DB2-BE3) 111 66(CA5) 90 177
ED4 33 87(AD1-DB2-BE3) # 120 23(DA5) 56 143

BA5 50 116(AD1-DC2-CE3-EB4) 166 0 50 166
CA5 66 111(AD1-DB2-BE3-EC4) 177 0 66 177
DA5 23 120(AD1-DB2-BE3-ED4) 143 0 23 143
EA5 46 130(AE1-EC2-CB3-BE4)#

130(AE1-EB2-BC3-CE4)#
 176 0 46 176

Table 4. Results of the cascading update for TSP-5 using some incorrect pre-routes (#)

 8

ride ride its

distance
ride its
sdistance

(shortest
 correct preceding
 route)

ride its
(distance

+
sdistance)

ride its
fdistance

(shortest
 correct following
 route)

ride its
(distance

+
fdistance)

ride its
totaldist

AB1 49 0 49 114(BE2-EC3-CD4-
DA5)

 163 163

AC1 67 0 67 111(CE2-EB3-BD4-
DA5)

 178 178

AD1 25 0 25 152(DB2-BC3-CE4-
EA5)

 177 177

AE1 47 0 47 inf(none) inf inf

BC2 39 49(AB1) 88 80(CE3-ED4-DA5) 119 168
BD2 44 49(AB1) 93 104(DE3-EB4-BA5) 148 197
BE2 19 49(AB1) 68 95(EC3-CD4-DA5) 114 163
CB2 40 67(AC1) 107 75(BE3-ED4-DA5) 115 182
CD2 48 67(AC1) 115 104(DE3-EB4-BA5) 152 219
CE2 24 67(AC1) 91 87(EB3-BD4-DA5) 111 178
DB2 43 25(AD1) 68 109(BC3-CE4-EA5) 152 177
DC2 47 25(AD1) 72 105(CB3-BE4-EA5) 152 177
DE2 34 25(AD1) 59 inf(none) inf inf
EB2 20 47(AE1) 67 inf(none) inf inf
EC2 24 47(AE1) 71 inf(none) inf inf
ED2 33 47(AE1) 80 inf(none) inf inf

BC3 39 67(AE1-EB2) 106 70(CE4-EA5) 109 176
BD3 44 67(AE1-EB2) 111 80(DE4-EA5) 124 191
BE3 19 68(AD1-DB2) 87 56(ED4-DA5) 75 143
CB3 40 71(AE1-EC2) 111 65(BE4-EA5) 105 176
CD3 48 71(AE1-EC2) 119 80(DE4-EA5) 128 199
CE3 24 72(AD1-DC2) 96 56(ED4-DA5) 80 152
DB3 43 80(AE1-ED2) 123 65(BE4-EA5) 108 188
DC3 47 80(AE1-ED2) 127 70(CE4-EA5) 117 197
DE3 34 93(AB1-BD2) 127 70(EB4-BA5) 104 197
EB3 20 59(AD1-DE2) 79 67(BD4-DA5) 87 146

EC3 24 59(AD1-DE2) 83 71(CD4-DA5) 95 154
ED3 33 68(AB1-BE2) 101 93(DB4-BA5) 126 194

BC4 39 79(AD1-DE2-EB3) 118 66(CA5) 105 184
BD4 44 111(AE1-EC2-CB3) 155 23(DA5) 67 178
BE4 19 inf(none) inf 46(EA5) 65 inf
CB4 40 83(AD1-DE2-EC3) 123 50(BA5) 90 173
CD4 48 106(AE1-EB2-BC3) 154 23(DA5) 71 177
CE4 24 inf(none) inf 46(EA5) 70 inf
DB4 43 119(AE1-EC2-CD3) 162 50(BA5) 93 212
DC4 47 101(AB1-BE2-ED3) 148 66(CA5) 113 214
DE4 34 inf(none) inf 46(EA5) 80 inf
EB4 20 96(AD1-DC2-CE3) 116 50(BA5) 70 166
EC4 24 87(AD1-DB2-BE3) 111 66(CA5) 90 177
ED4 33 inf(none) inf 23(DA5) 56 inf

BA5 50 116(AD1-DC2-CE3-EB4) 166 0 50 166
CA5 66 111(AD1-DB2-BE3-EC4) 177 0 66 177
DA5 23 154(AE1-EB2-BC3-CD4) 177 0 23 177
EA5 46 inf (none) inf 0 46 inf

Table 5. Results of the cascading update for TSP-5 using correct pre-routes

In table 4 we see that many routes preceding a ride at time level 4 are marked with �#�. This
indicates that the involved preceding route is incorrect because some town is visited more than
once. Moreover, many rides at time level 4 do not have any correct preceding route at all.

 9

Table 5 shows many rides without any correct preceding route or without any correct succeeding
route, which is indicated by �inf�. An interesting observation in table 5 is that ride AB1 is
followed by the shortest route BE2-EC3-CD4-DA5. Apparently the shortest cycle ABECDA
(163) can be found if the query is improved by using only shortest succeeding rides.

In a similar way ride BA5 is preceded by the shortest route AD1-DC2-CE3-EB4. In this way the
reverse cycle ADCEBA (166) of the shortest cycle can be found.

Because of these results, we also studied a greedy approach not using the cascade command
[section 6].

6. A greedy approach

The number of repetitive actions in TSP is predictable for each chosen number of towns;
therefore there is no need to apply any recursive command. The greedy approach starts with
operations on rides with time level 2. Using data on turns, the query determines for each of these
rides the shortest preceding ride with time level 1 starting in town A and copies the starting town
(here A) of the relevant ride 1 to the corresponding ride 2. The distance traversed by the shortest
preceding ride 1 (starting in A) is added to the distance traversed by ride 2 using a derived
attribute �ride its sdistance� (distance to start town). Similar steps are repeated for the rides with
time levels 3-5. This query and its results for diverse inputs are shown in Appendix-III.

Here we discuss these results in more detail for finding the shortest cycle starting and finishing in
town A and passing through the towns B, C, D and E:

The first step produced the following pre-routes over three towns (incl. its sdistance):
 AB1(49) + BC2(39) = ABC(88)
 + BD2(44) = ABD(93)
 + BE2(19) = ABE(68)
 AC1(67) + CB2(40) = ACB(107)
 + CD2(48) = ACD(115)
 + CE2(24) = ACE(91)
 AD1(25) + DB2(43) = ADB(68)
 + DC2(47) = ADC(72)
 + DE2(34) = ADE(59)
 AE1(47) + EB2(20) = AEB(67)
 + EC2(24) = AEC(71)
 + ED2(33) = AED(80)

The query produced twelve rides at time level 2 with a preceding ride starting in A. This equals
the number of possible tours over three towns starting in A: (5-1)*(5-2) = 12. This list of tours
over three towns is correct and complete, so at this stage there is no loss of information.

 10

The second step produced the following pre-routes over four towns (incl. its sdistance):
 ABC(88) is not the shortest pre-route for ride CD3 or CE3.
 ABD(93) + DE3(34) = ABDE(127)
 ABE(68) + ED3(33) = ABED(101)
 is not shortest pre-route for ride EC3.
 ACB(107) is not shortest pre-route for ride BD3 or ride BE3.
 ACD(115) is not shortest pre-route for ride DB3 or ride DE3.
 ACE(91) is not shortest pre-route for ride EB3 or ride ED3.
 ADB(68) + BE3(19) = ADBE(87)
 ADC(72) + CE3(24) = ADCE(96)
 ADE(59) + EB3(20) = ADEB(79)
 + EC3(24) = ADEC(83)
 AEB(67) + BC3(39) = AEBC(106)
 + BD3(44) = AEBD(111)
 AEC(71) + CB3(40) = AECB(111)
 + CD3(48) = AECD(119)
 AED(80) + DB3(43) = AEDB(123)
 + DC3(47) = AEDC(127)

In the greedy approach, the route ABE is not the shortest correct pre-route for ride EC3 (but it is
tour ADE), so we are not able to find the shortest cycle ABECDA in this way. Now the query
produced twelve results, which is half the number of possible routes over four towns starting in
the same town: (5-1)(5-2)(5-3) = 24. Because of this loss of information there is no guarantee that
the shortest cycle is found. The average probability that the shortest pre-route is found in this
algorithm is 50%.

After the third step the following pre-routes over five towns (sdistance) are produced:
 ABDE(127) is not the shortest pre-route for ride EC4.
 ABED(101) + DC4(47) = ABEDC(148)
 ADBE(87) + EC4(24) = ADBEC(111)
 ADCE(96) + EB4(20) = ADCEB(116)
 ADEB(79) + BC4(39) = ADEBC(118)
 ADEC(83) + CB4(40) = ADECB(123)
 AEBC(106) + CD4(48) = AEBCD(154)
 AEBD(111) is not the shortest pre-route for ride DC4.
 AECB(111) + BD4(44) = AECBD(155)
 AECD(119) + DB4(43) = AECDB(162)
 AEDB(123) is not the shortest pre-route for ride BC4.
 AEDC(127) is not the shortest pre-route for ride CB4.

The query produced eight routes over five towns starting in A, which means that 8/24 = 33.3 %
of the twenty four possible routes are found.

After the fourth step the following cycles are produced:
 ABEDC(148) is not the shortest pre-route for ride CA5.
 ADBEC(111) + CA5(66) = ADBECA(177)
 ADCEB(116) + BA5(50) = ADCEBA(166) (not the shortest cycle, but its reverse).
 ADEBC(118) is not the shortest pre-route for ride CA5.
 ADECB(123) is not the shortest pre-route for ride BA5.
 AEBCD(154) + DA5(23) = AEBCDA(177)
 AECBD(155) is not the shortest pre-route for ride DA5.
 AECDB(162) is not the shortest pre-route for ride BA5.

 11

These final results are complying with table 5: ride BA5 has the shortest correct preceding route
constituted by the rides AD1, DC2, CE3 and EB4. Only 3 of the possible 24 cycles are produced;
the chance to find the shortest cycle is 1/8 = 12.5 %. Other examples for TSP-5 in Appendix-II
show that sometimes four cycles are produced; a success probability of at most 1/6 = 16.7 %.
However, in the case of D as start/finish the same query produced the shortest cyclic route
DABECD (163), which is equivalent to the route ABECDA (163). Apparently, the choice of the
start/finish town can influence the results. Using similar queries for finding cycles over more than
five towns, the probability of finding a correct cycle by the greedy approach decreased with the
number of involved towns.

7. Discussion

Since decennia TSP is a famous NP-complete problem [7]. Considered as a combinatorial
optimization problem its complexity is proportional to (N-1)!, where N is the number of towns to
be visited. Our work on TSP-5, using the cascade command, demonstrates that query language
specifications in combination with an acyclic scheduling graph sometimes lead to a polynomial
solution because an exhaustive construction and comparison of all alternative routes is avoided.
A disadvantage of applying the cascading update operation to TSP is that it in most cases
produces incorrect cycles.
 Therefore we also examined another greedy approach not using the cascade command. The
last approach produces correct cycles, sometimes even the shortest cycle, but it does not
guarantee that the shortest cycle is found. The probability of finding the correct solution will
decrease with the number of involved towns.
 Finally, as shown in Appendix-IV, both discussed query language approaches to TSP have an
estimated time complexity of O{N5}. The costs of deriving data on rides and turns from the
geometric data on roads are proportional to N4, but this is a single activity to create our database.

References

[1] J.M. Aldous and R.J. Wilson, Graphs and Applications, an Introductory Approach, Springer-
 Verlag, London - Berlin - Heidelberg (2000).
[2] J.A. Bakker and J.H. ter Bekke, A Query Language Solution For Fastest Flight Connections,
 Proceedings International Conf. on Databases and Applications DBA 2004, Innsbruck, Austria,
 M.H. Hamza (Ed.), ACTA Press, Anaheim - Calgary - Zürich (2004), pp. 197-202.
[3] J.A. Bakker and J.H. ter Bekke, A Query Language Solution For Shortest Path Problems In Cyclic
 Geometries, Proceedings International Conf. on Databases and Applications DBA 2004, Innsbruck,
 Austria, M.H. Hamza (Ed.), ACTA Press, Anaheim-Calgary -Zürich (2004), pp. 203-207.
[4] Bert Bakker and Johan ter Bekke, Fool Proof Query Access to Search Engines, Proc. 3rd Int. Conf.
 on Information Integration and Web-based Applications & Services, Linz, Austria, W.Winiwarter,
 S. Bressan and I.K. Ibrahim (Eds.), Österreichisches Computer Gesellschaft (2001), p.389-394.
[5] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag,
 London (2001).
[6] A.A.S. Danthine, Protocol Representation with Finite-State Models, IEEE Transactions on
 Communication, Vol. COM-20 (1980), pp. 632-643.
[7] G. Gutin and A.P. Punnen (eds.), Combinatorial Optimization, Vol. 12: The Traveling Salesman
 Problem and Its Variations, Kluwer Academic Publishers, Dordrecht, Boston, London (2002).
[8] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (Eds.), The Traveling Sales-
 man Problem, a Guided Tour of Combinatorial Optimization, John Wiley & Sons, Chicester -
 New York - Brisbane - Toronto - Singapore (1985).

 12

[9] F. Rolland, The essence of databases, Prentice Hall, Hemel Hempstead (1998).
[10] J.H. ter Bekke, Semantic Data Modeling, Prentice Hall, Hemel Hempstead (1992).
[11] J.H. ter Bekke, Can we rely on SQL?, Proceedings 8th International DEXA Workshop,
 Toulouse (1997), R.R. Wagner (Ed.), IEEE Computer Society, pp. 378-383.
[12] J.H. ter Bekke, Advantages of a compact semantic meta model, Proceedings 2nd IEEE Metadata
 Conference, Silver Spring, USA (1997),
 http://www.computer.org/conferen/proceed/meta97/papers/jterbekke/jterbekke.html
[13] J.H. ter Bekke and J.A. Bakker, Limitations of relationships constructed from coinciding data,
 Proceedings International Conference on Intelligent Systems and Control (ICSC 2001), Clearwater,
 Florida, USA, H.M. Hamza (Ed.), ACTA Press, Anaheim - Calgary � Zürich (2001, pp. 247-252.
[14] J.H. ter Bekke and J.A. Bakker, Content-driven specifications for recursive project planning
 applications, Proceedings International Conference on Applied Informatics (AI 2002), Innsbruck,
 Austria, M.H. Hamza (Ed.), ACTA Press, Anaheim - Calgary - Zürich (2002), pp. 448-452.
[15] J.H. ter Bekke and J.A. Bakker, Recursive queries in product databases, Flexible Query
 Answering Systems, Proc. 5th Int. Conf. on Flexible Query Answering Systems 2002, Copenhagen,
 Denmark, October 27-29, 2002, LNCS (Subseries LNAI), Vol. 2522, T. Andreasen, A. Motro, H.
 Christiansen and H. Legind Larsen (Eds.), Springer-Verlag, Berlin - Heidelberg (2002), pp. 44-55.
[16] J.H. ter Bekke and J.A. Bakker, Fast Recursive Data Processing in Graphs Using Reduction,
 Proceedings International Conference on Applied Informatics (AI 2003), Innsbruck, Austria,
 M.H. Hamza (Ed.), ACTA Press, Anaheim - Calgary - Zürich (2003), pp. 490-494.
[17] J.H. ter Bekke and J.A. Bakker, Modeling and Querying Recursive Data Structures I:
 Introduction, Proceedings Int. Conf. on Artificial Intelligence and Soft Computing ASC 2004,
 Banff, Canada, H. Leung (Ed.), ACTA Press, Anaheim - Calgary - Zürich (2003), pp. 278-282.
[18] J.H. ter Bekke and J.A. Bakker, Modeling and Querying Recursive Data Structures II: A
 Semantic Approach, Proc. Int. Conf. on Artificial Intelligence and Soft Computing ASC 2004,
 Banff, Canada, H. Leung (Ed.), ACTA Press, Anaheim - Calgary - Zürich (2003), pp. 283-289.

Appendix-I: generating rides and turns (up to TSP-10)

road from_town to_town distance road from_town to_town distance
1 A B 49 21 A F 12

2 A C 67 22 A G 59

3 A E 47 23 A H 80

4 A D 25 24 A J 48

5 B A 50 25 A K 64

6 B D 44 26 F A 11

7 B E 19 27 G A 58

8 B C 39 28 H A 78

9 C A 66 29 J A 48

10 C B 40 30 K A 66

11 C D 48 31 B F 39

12 C E 24 32 B G 12

13 D A 23 33 B H 40

14 D B 43 34 B J 44

15 D C 47 35 B K 47

16 D E 34 36 F B 38

17 E A 46 37 G B 12

18 E B 20 38 H B 39

19 E C 24 39 J B 45

20 E D 33 40 K B 47

Table 1. Roads 1 � 40

 13

road from_town to_town distance road from_town to_town distance

41 C F 62 66 F E 39

42 C G 32 67 G E 18

43 C H 19 68 H E 32

44 C J 29 69 J E 27

45 C K 13 70 K E 29

46 F C 62 71 F G 49

47 G C 33 72 F H 72

48 H C 19 73 F J 47

49 J C 28 74 F K 61

50 K C 13 75 G F 49

51 D F 27 76 G H 29

52 D G 50 77 G J 45

53 D H 62 78 G K 41

54 D J 23 79 H F 71

55 D K 42 80 H G 29

56 F D 27 81 H J 46

57 G D 50 82 H K 31

58 H D 63 83 J F 47

59 J D 23 84 J G 45

60 K D 42 85 J H 46

61 E F 39 86 J K 20

62 E G 18 87 K F 61

63 E H 32 88 K G 42

64 E J 28 89 K H 30

65 E K 29 90 K J 20

Table 2. Roads 41 - 90

Queries for the generation of rides and turns
 get road its ��, �| �, �1�.
 get road its ��, �| �, �2�.
 get road its ��, �| �, �3�.
 etc. etc. �������.
 get road its ��, �| �, �10�.

Each get operation generates 90 roads followed by the specified integer expression. The empty
string command �� presents the identifier of a road. The symbol �|� is produced in order to mark the
preceding text (the identifier) as an integer expression. The result of this query is a report consisting
of 900 lines containing a road identifier, followed by the text �| � and the value for �ride its
time_level�. This report is used as input for instances of �ride� (type ride = road, time_level).
During the input process, the Xplain-DBMS offers the possibility to produce identifiers for the new
instances automatically, which is applied here.

 The number of roads is N*(N-1), and the number of rides per road is N, so the number of lines in
the resulting report is N2*(N-1). The time complexity of generating rides is O(N3).

 14

Generating turn data-1 for town A:
 get ride its ��, �| �, road its from_town, �| �, time_level
 where road its to_town = �A�
 per time_level. /* sorting per time level.

Since the Xplain-DBMS does not contain secondary indices for attributes, all instances of �ride�
must be read; the reading costs of these get operation are proportional to the number of rides:
N2*(N-1). Here the sorting costs (in RAM) are proportional to 2log{ N2*(N-1)}, but they can be
ignored in comparison with the reading costs (disk-data): N2*(N-1) = O (N3).
 The number of roads going to the same town is (N-1). There are N rides per road, so the
number of instances (lines) in the resulting report containing rides to town A is: N*(N-1).

Generating turn data-2 for town A:
 extend ride with prevlevel = time_level �1.

 get ride its ��, �| �, road its to_town, �| �, prevlevel
 where road its from_town = �A�
 per prevlevel. /* sorting per previous time level.

The symbols �|� and � � have to mark and separate the integer expressions in the file produced by a
query. The results of both queries were written to separate files and the result files were joined on
the basis of the following condition: �ride-1 its data-1 time-level = �ride-2 its data-2 prevlevel�.
Each report has N*(N-1) lines, so the costs of joining two already sorted result files (reports) are
proportional to N*(N-1). The resulting join report was used as input for the generation of instances
of �help� using the following addition to our data model:

 type help (i4) = first_ride (i5), start_town (a2), sec_ride (i5), finish_town (a2).

For each town the total costs of generating instances of �help� are roughly proportional to N3. Doing
the same for all towns we find that the costs of generating help-data are O(N4).

In order to clean the subset with instances of �help�, we removed turns from ride XY to ride YX, in
other words we removed turnarounds:

 delete help where start_town = finish_town. The costs of this deletion: O(N4).

Producing the wanted subset of instances of �turn�:

 get help its first_ride, �| �, sec_ride, �|�.

The attributes �help its first_ride� and �help its sec_ride� are represented by integer expressions in
the report file. Therefore, we mark and separate them with the text �| �, otherwise the report file
cannot be used as input for values of the attributes �turn its previous_ride� and �turn its next_ride�.
The results of this query were written to a report file and used as import data for instances of �turn�.
Apparently the total costs for generating all data on rides and turns are proportional to N4 .

 15

Appendix-II: applying the cascade command to TSP-5

APPROACH FOR A CYCLIC TOUR VIA 5 TOWNS STARTING IN TOWN-1 USING THE CASCADE-COMMAND:
value t1 = input(a2) "Enter town-1: ". value text1 = "town-1: ". # READING USER INPUT
value text1. value t1. # PRINTING COMMANDS FOR text1 AND t1.
value t2 = input(a2) "Enter town-2: ". value text2 = "town-2: ". value text2. value t2.
value t3 = input(a2) "Enter town-3: ". value text3 = "town-3: ". value text3. value t3.
value t4 = input(a2) "Enter town-4: ". value text4 = "town-4: ". value text4. value t4.
value t5 = input(a2) "Enter town-5: ". value text5 = "town-5: ". value text5. value t5.
value inf = total road its distance. # INITIALIZATION OF inf WITH THE HIGHEST
 # POSSIBLE LENGTH OF A CYCLE.
extend ride with distance = road its distance. # FASTER PROCESSING, SHORTER QUERY TEXT.
extend ride with fromtown = road its from_town. # IDEM.
extend ride with totown = road its to_town. # IDEM.

extend ride with c = # RIDES MUST GO BETWEEN TWO OF THE FIVE INPUT TOWNS.
((time_level = 1 and fromtown = t1
 and (totown = t2 or totown = t3 or totown = t4 or totown = t5)
 or (time_level = 5 and totown = t1
 and (fromtown = t2 or fromtown = t3 or fromtown = t4 or fromtown = t5))
 or (time_level > 1 and time_level < 5
 and (fromtown = t2 or fromtown = t3 or fromtown = t4 or fromtown = t5)
 and (totown = t2 or totown = t3 or totown = t4 or totown = t5)))).

extend turn with c = (previous_ride its c and next_ride its c).
 # TURNS MUST BE SUITABLE.
extend ride with sdistance = inf. # INITIALIZATION OF THE DISTANCE OF RIDES TO START.

update ride its sdistance = 0 where road its from_town = t1 and time_level = 1.
 # CORRECTION FOR THE SPECIFIED RIDES.
cascade ride its sdistance = # CASCADING UPDATES OF ride its sdistance.
 min turn its previous_ride its sdistance + previous_ride its distance where c
 per next_ride.
extend ride with fdistance = inf. # INITIALIZATION OF THE DISTANCE OF RIDES TO FINISH.
update ride its fdistance = 0 where road its to_town = t1 and time_level = 5.
 # CORRECTION FOR THE SPECIFIED RIDES.
cascade ride its fdistance = # CASCADING UPDATES OF ride its fdistance.
 min turn its next_ride its fdistance + next_ride its distance where c
 per previous_ride.
extend ride with totaldistance = sdistance + distance + fdistance.
value minimum = min ride its totaldistance.
extend ride with suitable =
 (totaldistance = minimum and fdistance < inf and sdistance < inf).
get ride its time_level, # SHOW RESULTS.
 road its from_town, road its to_town,
 " sdist:", sdistance, " dist:", distance, " fdist:", fdistance,
 " totaldist:", totaldistance
 where suitable per time_level. # ORDERING THE SELECTED RIDES PER time_level.

Results for a tour via the towns B, C, D, F, and G.

INPUT(1): town-1: G town-2: D town-3: B town-4: C town-5: F
OUTPUT(1) (the first column presents the id.’s of the retrieved rides,
 the second column presents time levels of retrieved rides):
 551 1 G B sdist: 0 dist: 12 fdist: 121 totaldist: 133
 113 2 B D sdist: 12 dist: 44 fdist: 77 totaldist: 133
 133 2 B F sdist: 12 dist: 39 fdist: 82 totaldist: 133
 314 3 D F sdist: 56 dist: 27 fdist: 50 totaldist: 133
 484 3 F D sdist: 51 dist: 27 fdist: 55 totaldist: 133
 285 4 D B sdist: 78 dist: 43 fdist: 12 totaldist: 133
 465 4 F B sdist: 83 dist: 38 fdist: 12 totaldist: 133
 146 5 B G sdist: 121 dist: 12 fdist: 0 totaldist: 133
Two incorrect cycles: GBDFBG(133) and GBFDBG(133): B twice and C missed.

 16

INPUT(2): town-1: F town-2: G town-3: D town-4: B town-5: C
OUTPUT(2):
 481 1 F D sdist: 0 dist: 27 fdist: 130 totaldist: 157
 293 2 D C sdist: 27 dist: 47 fdist: 83 totaldist: 157
 234 3 C G sdist: 74 dist: 32 fdist: 51 totaldist: 157
 555 4 G B sdist: 106 dist: 12 fdist: 39 totaldist: 157
 136 5 B F sdist: 118 dist: 39 fdist: 0 totaldist: 157
A correct cycle of rides is found: FDCGBF (total distance: 157).

INPUT(3): town-1: D town-2: B town-3: C town-4: F town-5: G
OUTPUT(3):
 311 1 D F sdist: 0 dist: 27 fdist: 126 totaldist: 153
 463 2 F B sdist: 27 dist: 38 fdist: 88 totaldist: 153
 144 3 B G sdist: 65 dist: 12 fdist: 76 totaldist: 153
 595 4 G F sdist: 77 dist: 49 fdist: 27 totaldist: 153
 486 5 F D sdist: 126 dist: 27 fdist: 0 totaldist: 153
An incorrect series of rides is found: DFBGFD(153): F twice and C missed.

INPUT(4): town-1: C town-2: F town-3: G town-4: D town-5: B
OUTPUT(4):
 231 1 C G sdist: 0 dist: 32 fdist: 125 totaldist: 157
 553 2 G B sdist: 32 dist: 12 fdist: 113 totaldist: 157
 134 3 B F sdist: 44 dist: 39 fdist: 74 totaldist: 157
 485 4 F D sdist: 83 dist: 27 fdist: 47 totaldist: 157
 296 5 D C sdist: 110 dist: 47 fdist: 0 totaldist: 157
A correct cycle of rides is found: CGBFDC(total distance: 157).

INPUT(5): town-1: B town-2: C town-3: F town-4: G town-5: D
OUTPUT(5):
 141 1 B G sdist: 0 dist: 12 fdist: 138 totaldist: 150
 573 2 G D sdist: 12 dist: 50 fdist: 88 totaldist: 150
 593 2 G F sdist: 12 dist: 49 fdist: 89 totaldist: 150
 314 3 D F sdist: 62 dist: 27 fdist: 61 totaldist: 150
 484 3 F D sdist: 61 dist: 27 fdist: 62 totaldist: 150
 325 4 D G sdist: 88 dist: 50 fdist: 12 totaldist: 150
 505 4 F G sdist: 89 dist: 49 fdist: 12 totaldist: 150
 556 5 G B sdist: 138 dist: 12 fdist: 0 totaldist: 150
Two incorrect cycles: BGDFGB(150) and BGFDGB(150). G twice and C missed.

Results for a tour via the towns A, B, C, D and E

INPUT(6): town-1: A town-2: B town-3: C town-4: D town-5: E
OUTPUT(6):
 21 1 A D sdist: 0 dist: 25 fdist: 118 totaldist: 143
 283 2 D B sdist: 25 dist: 43 fdist: 75 totaldist: 143
 124 3 B E sdist: 68 dist: 19 fdist: 56 totaldist: 143
 395 4 E D sdist: 87 dist: 33 fdist: 23 totaldist: 143
 276 5 D A sdist: 120 dist: 23 fdist: 0 totaldist: 143
ADBEDA(143): Incorrect because D is visited twice and C is missed.

INPUT(7): town-1: B town-2: C town-3: D town-4: E town-5: A
OUPUT(7):
 121 1 B E sdist: 0 dist: 19 fdist: 123 totaldist: 142
 393 2 E D sdist: 19 dist: 33 fdist: 90 totaldist: 142
 274 3 D A sdist: 52 dist: 23 fdist: 67 totaldist: 142
 35 4 A E sdist: 75 dist: 47 fdist: 20 totaldist: 142
 376 5 E B sdist: 122 dist: 20 fdist: 0 totaldist: 142
BEDAEB(142): Incorrect because E is visited twice and C is missed.

 17

INPUT(8): town-1: C town-2: D town-3: E town-4: A town-5: B
OUTPUT(8):
 211 1 C E sdist: 0 dist: 24 fdist: 119 totaldist: 143
 393 2 E D sdist: 24 dist: 33 fdist: 86 totaldist: 143
 284 3 D B sdist: 57 dist: 43 fdist: 43 totaldist: 143
 125 4 B E sdist: 100 dist: 19 fdist: 24 totaldist: 143
 386 5 E C sdist: 119 dist: 24 fdist: 0 totaldist: 143
CEDBEC(143): Incorrect because E is visited twice and A is missed.

INPUT(9): town-1: D town-2: E town-3: A town-4: B town-5: C
OUTPUT(9):
 301 1 D E sdist: 0 dist: 34 fdist: 116 totaldist: 150
 373 2 E B sdist: 34 dist: 20 fdist: 96 totaldist: 150
 383 2 E C sdist: 34 dist: 24 fdist: 92 totaldist: 150
 104 3 B C sdist: 54 dist: 39 fdist: 57 totaldist: 150
 194 3 C B sdist: 58 dist: 40 fdist: 52 totaldist: 150
 125 4 B E sdist: 98 dist: 19 fdist: 33 totaldist: 150
 215 4 C E sdist: 93 dist: 24 fdist: 33 totaldist: 150
 396 5 E D sdist: 117 dist: 33 fdist: 0 totaldist: 150
Two incorrect cycles found: DEBCED(150) and DECBED(150). E visited twice and A missed.

INPUT(10): town-1: E town-2: A town-3: B town-4: C town-5: D
OUTPUT(10):
 371 1 E B sdist: 0 dist: 20 fdist: 135 totaldist: 155
 113 2 B D sdist: 20 dist: 44 fdist: 91 totaldist: 155
 274 3 D A sdist: 64 dist: 23 fdist: 68 totaldist: 155
 5 4 A B sdist: 87 dist: 49 fdist: 19 totaldist: 155
 126 5 B E sdist: 136 dist: 19 fdist: 0 totaldist: 155
EBDABE(155): Incorrect because B is visited twice and C is missed.

Appendix-III: results of the greedy approach to TSP-5

GREEDY APPROACH FOR A CYCLIC TOUR VIA 5 SELECTED TOWNS STARTING IN town-1:
value t1 = input(a2) "Enter town-1: ". value text1 = "town-1: ". # t1:START AND FINISH.
value text1. value t1. # PRINT COMMANDS FOR text1 AND t1.
value t2 = input(a2) "Enter town-2: ". value text2 = "town-2: ". value text2. value t2.
value t3 = input(a2) "Enter town-3: ". value text3 = "town-3: ". value text3. value t3.
value t4 = input(a2) "Enter town-4: ". value text4 = "town-4: ". value text4. value t4.
value t5 = input(a2) "Enter town-5: ". value text5 = "town-5: ". value text5. value t5.
value inf = total road its distance. # INITIALIZE inf WITH THE HIGHEST
 # POSSIBLE LENGTH OF A CYCLE.
extend ride with distance = road its distance. # FASTER PROCESSING AND SHORTER QUERY.
extend ride with fromtown = road its from_town. # IDEM.
extend ride with totown = road its to_town. # IDEM.
extend ride with c = # RIDES MUST GO BETWEEN TWO OF THE FIVE TOWNS.
((time_level = 1 and fromtown = t1
 and (totown = t2 or totown = t3 or totown = t4 or totown = t5)
 or (time_level = 5 and totown = t1
 and (fromtown = t2 or fromtown = t3 or fromtown = t4 or fromtown = t5))
 or (time_level > 1 and time_level < 5
 and (fromtown = t2 or fromtown = t3 or fromtown = t4 or fromtown = t5)
 and (totown = t2 or totown = t3 or totown = t4 or totown = t5)))).
extend turn with c = (previous_ride its c and next_ride its c).
 # TURNS MUST BE SUITABLE.
CALCULATIONS FOR THE SUITABLE RIDES HAVING time_level = 2:
extend turn with c1 = (previous_ride its time_level = 1 and c).
 # TURNS FROM A FIRST TO A SECOND RIDE MUST BE CORRECT.
INITIALIZATION OF ride its totaldistance TO THE STARTING TOWN t1:
extend ride with totaldist = inf.
update ride its totaldist = distance where time_level = 1 and c.
 # CORRECTION OF SELECTED RIDES.

 18

CALCULATING THE SHORTEST RIDE WITH time_level = 1 TO NEXT RIDES WITH time_level = 2:
extend ride with min1 = min turn its previous_ride its totaldist where c1
 per next_ride.
SELECTION OF ride its town1 USING A SUITABLE PREVIOUS RIDE:
extend ride with town1 = some turn its previous_ride its fromtown where c1
 and previous_ride its totaldist = next_ride its min1
 per next_ride.
SELECTION of ride its town2 USING A SUITABLE PREVIOUS RIDE:
extend ride with town2 = some turn its previous_ride its totown where c1
 and previous_ride its totaldist = next_ride its min1
 per next_ride.
CALCULATION OF THE total distance FOR THE SELECTED RIDES:
update ride its totaldist = distance + min1 where time_level = 2 and c.

CALCULATIONS FOR THE SUITABLE RIDES HAVING time_level =3:
extend turn with c2 = (previous_ride its time_level = 2 and c).
extend ride with min2 = min turn its previous_ride its totaldist where c2
 per next_ride.
extend ride with town3 = some turn its previous_ride its fromtown where c2
 and previous_ride its totaldist = next_ride its min2
 per next_ride.
extend ride with town4 = some turn its previous_ride its totown where c2
 and previous_ride its totaldist = next_ride its min2
 per next_ride.
extend ride with p5 = some turn its previous_ride its town1 where c2
 and previous_ride its totaldist = next_ride its min2
 per next_ride.
extend ride with p6 = some turn its previous_ride its town2 where c2
 and previous_ride its totaldist = next_ride its min2
 per next_ride.
update ride its town1 = p5 where time_level = 3 and c.
update ride its town2 = p6 where time_level = 3 and c.
update ride its totaldist = distance + min2 where time_level = 3 and c.

CALCULATIONS FOR THE SUITABLE RIDES HAVING time_level =4:
extend turn with c3 = (previous_ride its time_level = 3 and c
 and next_ride its totown <> previous_ride its town2).
extend ride with min3 = min turn its previous_ride its totaldist where c3
 per next_ride.
extend ride with town5 = some turn its previous_ride its fromtown where c3
 and previous_ride its totaldist = next_ride its min3
 per next_ride.
extend ride with town6 = some turn its previous_ride its totown where c3
 and previous_ride its totaldist = next_ride its min3
 per next_ride.
extend ride with p7 = some turn its previous_ride its town1 where c3
 and previous_ride its totaldist = next_ride its min3
 per next_ride.
extend ride with p8 = some turn its previous_ride its town2 where c3
 and previous_ride its totaldist = next_ride its min3
 per next_ride.
update ride its town1 = p7 where time_level = 4 and c.
update ride its town2 = p8 where time_level = 4 and c.
extend ride with p9 = some turn its previous_ride its town3 where c3
 and previous_ride its totaldist = next_ride its min3
 per next_ride.
extend ride with p10 = some turn its previous_ride its town4 where c3
 and previous_ride its totaldist = next_ride its min3
 per next_ride.
update ride its town3 = p9 where time_level= 4 and c.
update ride its town4 = p10 where time_level = 4 and c.
update ride its totaldist = distance + min3 where time_level = 4 and c.

 19

CALCULATIONS FOR THE SUITABLE RIDES HAVING time_level =5:

extend turn with c4 = (previous_ride its time_level = 4 and c).
extend ride with min4 = min turn its previous_ride its totaldist where c4
 per next_ride.
extend ride with town7 = some turn its previous_ride its fromtown where c4
 and previous_ride its totaldist = next_ride its min4
 per next_ride.
extend ride with town8 = some turn its previous_ride its totown where c4
 and previous_ride its totaldist = next_ride its min4
 per next_ride.
extend ride with p11 = some turn its previous_ride its town1 where c4
 and previous_ride its totaldist = next_ride its min4
 per next_ride.
extend ride with p12 = some turn its previous_ride its town2 where c4
 and previous_ride its totaldist = next_ride its min4
 per next_ride.
update ride its town1 = p11 where time_level = 5 and c.
update ride its town2 = p12 where time_level = 5 and c.
extend ride with p13 = some turn its previous_ride its town3 where c4
 and previous_ride its totaldist = next_ride its min4
 per next_ride.
extend ride with p14 = some turn its previous_ride its town4 where c4
 and previous_ride its totaldist = next_ride its min4
 per next_ride.
update ride its town3 = p13 where time_level = 5 and c.
update ride its town4 = p14 where time_level = 5 and c.
extend ride with p15 = some turn its previous_ride its town5 where c4
 and previous_ride its totaldist = next_ride its min4
 per next_ride.
extend ride with p16 = some turn its previous_ride its town6 where c4
 and previous_ride its totaldist = next_ride its min4
 per next_ride.

update ride its town5 = p15 where time_level = 5 and c.
update ride its town6 = p16 where time_level = 5 and c.
update ride its totaldist = distance + min4 where time_level = 5 and c.

newline.

value interresult =
 "Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5 ".
value interresult.

get ride its town1, town2, town3, town4, town5, town6, town7, town8, fromtown, totown,
 totaldist
 where time_level = 5 and town1 = t1 and totown = t1.

newline.

value minimum = min ride its totaldist
 where time_level = 5 and town1 = t1 and totown = t1.
value finalresult =
 "Shortest cycle with start and finish in town-1 via the towns -2, -3, -4, and -5 ".
value finalresult.

get ride its town1, town2, town4, town6, town8, totown, totaldist
 where time_level = 5 and totown = t1 and town1 = t1 and totaldist = minimum.

 20

Results for a cycle via B, C, D, F and G; comments between brackets

INPUT(1): town-1: G town-2: D town-3: B town-4: C town-5: F
OUTPUT(1):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 236 G B B F F D D C C G 157
 326 G C C B B F F D D G 189
 506 G B B C C D D F F G 175
Shortest cycle with start and finish in town-1 via the towns -2, -3, -4, and -5:
 236 G B F D C G 157
{GBFDCG 157 equals the shortest cycle BFDCGB 157}

INPUT(2): town-1: F town-2: G town-3: D town-4: B town-5: C
OUTPUT(2):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 136 F D D C C G G B B F 157
 226 F D D B B G G C C F 177
 316 F B B G G C C D D F 158
 596 F D D C C B B G G F 175
Shortest cycle with start and finish in town-1 via the towns -2, -3, -4, and -5:
 136 F D C G B F 157
{FDCGBF 157 equals the shortest cycle BFDCGB 157}

INPUT(3): town-1: D town-2: B town-3: C town-4: F town-5: G
OUTPUT(3):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 206 D F F B B G G C C D 158
 486 D B B G G C C F F D 177
 576 D B B F F C C G G D 226
Shortest cycle with start and finish in town-1 via the towns -2, -3, -4, and -5:
 206 D F B G C D 158
{equals BGCDFB 158, reverse of the shortest cycle BFDCGB 157}

INPUT(4): town-1: C town-2: F town-3: G town-4: D town-5: B
OUTPUT(4):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 106 C D D F F G G B B C 175
 296 C G G B B F F D D C 157
 476 C G G B B D D F F C 177
 566 C D D F F B B G G C 158
Shortest cycle with start and finish in town-1 via the towns -2, -3, -4, and -5:
 296 C G B F D C 157
{CGBFDC 157 equals the shortest cycle BFDCGB 157}

INPUT(5): town-1: B town-2: C town-3: F town-4: G town-5: D
OUTPUT(5):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 196 B G G F F D D C C B 175
 286 B G G C C F F D D B 177
 466 B G G C C D D F F B 158
Shortest cycle with start and finish in town-1 via the towns -2, -3, -4, and -5:
 466 B G C D F B 158
{equals BGCDFB 158, reverse of the shortest cycle BFDCGB 157}

 21

Results for a cycle via A, B, C, D and E

INPUT(6): town-1: A town-2: B town-3: C town-4: D town-5: E
OUTPUT(6):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 96 A D D C C E E B B A 166
 186 A D D B B E E C C A 177
 276 A E E B B C C D D A 177
Shortest cycle with start and finish in town-1 via the towns-2, -3, -4, and -5:
 96 A D C E B A 166
{equals ADCEBA 166, reverse of the shortest cycle ABECDA 163}

INPUT(7): town-1: B town-2: C town-3: D town-4: E town-5: A
OUTPUT(7):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 6 B E E C C D D A A B 163
 196 B A A D D E E C C B 173
 286 B E E C C A A D D B 177
Shortest cycle with start and finish in town-1 via the towns-2, -3, -4, and -5:
 6 B E C D A B 163
{BECDAB equals the shortest cycle ABECDA 163}

INPUT(8): town-1: C town-2: D town-3: E town-4: A town-5: B
OUTPUT(8):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 16 C E E B B D D A A C 178
 106 C E E D D A A B B C 168
 296 C E E B B A A D D C 166
Shortest cycle with start and finish in town-1 via the towns-2, -3, -4, and -5:
 296 C E B A D C 166
{CEBADC equals ADCEBA 166, reverse of the shortest cycle ABECDA 163}

INPUT(9): town-1: D town-2: E town-3: A town-4: B town-5: C
OUTPUT(9):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 26 D E E C C B B A A D 173
 116 D E E C C A A B B D 217
 206 D A A B B E E C C D 163
Shortest cycle with start and finish in town-1 via the towns-2, -3, -4, and -5:
 206 D A B E C D 163
{DABECD equals the shortest cycle ABECDA 163}

INPUT(10): town-1: E town-2: A town-3: B town-4: C town-5: D
OUTPUT(10):
Series of rides with start and finish in town-1 via the towns -2, -3, -4 and -5:
 36 E B B C C D D A A E 177
 126 E D D A A C C B B E 182
 216 E B B A A D D C C E 166
 306 E C C B B A A D D E 173
Shortest cycle with start and finish in town-1 via the towns-2, -3, -4, and -5:
 216 E B A D C E 166
{EBADCE equals ADCEBA 166, reverse of the shortest cycle ABECDA 163}

 22

Appendix-IV: Time complexity of query language approaches to asymmetric TSP
Complying with the definition, each pair of towns is connected by two single-direction roads with
reverse directions and different lengths [1, 5, 7, and 8]. Then the number of single-direction roads
is N*(N-1). A round tour through N towns consists of N successive rides and each of these N
towns is visited only once. Using rides and turns, a suitable number of time levels must be
chosen. Referring to figure 3, it is clear that we have to define N time levels: N rides for each
road. The number of single-direction roads is N*(N-1), the total number of rides is N*N*(N-1).
However, in our database the rides at the highest time level are not followed by other rides;
therefore the number of rides that can be followed by other rides is (N-1)*N*(N-1).
 A ride XY can be succeeded by (N-1) rides starting in town Y, but the reverse ride YX is not
suitable. Therefore, turnarounds are not present in our database created for TSP-cases up to ten
towns. Consequently for each of the rides that can be followed by another ride the number of
possible successive rides is (N-2). Thus the number of turns (arcs) suitable for a cyclic tour over
N towns to be registered is not (N-1)*N*(N-1)2, but (N-2)*N*(N-1)2.

For the time complexity of our two query language approaches, we consider both data generation
and query processing.

Costs of data generation
As explained during the discussion on data generation, the total costs of data generation are
roughly proportional to N4, where N is the number of towns.

Costs of the approach using the cascading update
For TSP-5 the number of set operations (extend, update, get) on instances of �ride� is 12. The
number of rides is N*N*(N-1), so the costs are O{N3}. The number of set operations on instances
of �turn� is 1. The cost of this operation on �turn� is proportional to the number of turns (N-
2)*N*(N-1)2 : O{N4}. We used two cascade commands. The costs of this operation is
proportional to d*A [16], where d is the depth of the graph and A is the number of arcs. In our
case d equals the number of time levels N, whereas A equals the number of turns: (N-2)*N*(N-
1)2. As a result, the costs of the two cascade commands are proportional to N5. Therefore, the
overall time complexity of the query using the cascade command is: O{N5}.

Costs of the greedy approach
The greedy approach applies a step by step approach. Although the number of operations within
the type �ride� increases within each following step, a rough estimation is that in each step the
number of operations within the type �ride� is proportional to the number of rides: N*N*(N-1),
which leads to a time complexity O{N3}. In each step we applied one extend operation where the
set of turns is involved, so the costs are proportional to the number of turns: O{N4}.
The number of steps is N-1, consequently, the roughly estimated overall time complexity of this
greedy approach is: O{ N5}.

